基于梯形-复化Gauss 积分的赋形反射面天线远场快速分析

    Fast Analysis of Far Field Patterns of Reflector Antennas with Trapezoid-Compound Gauss Integration

    • 摘要: 针对赋形反射面天线优化设计耗时长的问题,提出了一种快速有效的分析赋形反射面天线远场的计算方法,并计算了赋形反射面天线的远场方向图。将远场积分公式中对赋形反射面的积分转换为对投影面上单位圆域的积分,再运用二维梯形-复化Gauss 积分将积分公式转换为数值相乘累加求和的形式,并给出了详细的计算公式。对C 波段和X 波段不同大小圆形口径赋形反射面天线远场进行分析,文中方法计算结果与直接积分法、Gordon 积分法计算结果相吻合,计算效率得到显著改善,该方法的有效性得到验证。

       

      Abstract: In order to improve the time-consuming problem of shaped reflector antenna optimization and design,an effective analysis technique for computing far field patterns of shaped reflector antennas is presented and the far field patterns of shaped reflector antennas is analyzed in this paper. The integration area is converted into a unit circle on the projection from antennas surface,with two dimensional trapezoid -compound Gauss formulas,the integral equation is converted into the form of numerical summation. The far field patterns of shaped reflector antennas with different caliber in C-band and X-band are considered. The result agrees well with that of direct integration and Gordon integration. The computational efficiency is proved and the validity of the proposed approach is verified.

       

    /

    返回文章
    返回