一种石墨烯可重构贴片天线电磁响应快速预测方法
A Fast Prediction Method of Graphene Reconfigurable Patch Antenna Electromagnetic Response
-
摘要: 针对传统石墨烯可重构天线辐射特性全波模拟耗时问题,将支持向量回归(Support Vector Regression,SVR)这一机器学习方法用于石墨烯贴片天线参数快速重构预测。将石墨烯贴片天线不同参数(贴片尺寸、化学势、 频率等)下的电磁响应转化为一个回归估计问题。以天线单元参数为输入,相应S参数为输出,建立回归模型,利用全波模拟仿真软件建立支持向量回归训练数据集和测试数据集,实现石墨烯可重构天线单元电磁响应的快速预测。数值算例中通过对S11 参数的预测,并与径向基函数网络方法、全波仿真软件结果进行比较,验证了方法的有效性。Abstract: Aiming at the time-consuming problem of full-wave simulation of the traditional graphene reconfigurable anantenna radiation characteristics, this paper uses Support Vector Regression (SVR) as a machine learning method for the rapid reconstruction prediction of graphene patch antenna parameters. The electromagnetic response of graphene patch antenna under different parameters (patch size, chemical potential, frequency, etc. ) is transformed into a regression estimation problem. Using the antenna element parameters as input and the corresponding S parameters as output, a regression model is established,and full-wave simulation software is used to establish a support vector regression training data set and test data set to achieve rapid prediction of the electromagnetic response of the graphene reconfigurable antenna element. In numerical examples, the prediction of S11 parameters is compared with the results of radial basis function network method and full-wave simulation software to verify the effectiveness of the proposed method.