• 北大中文核心期刊
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)扩展库
  • 中国科技论文统计源期刊
  • 中国学术期刊网(CNKI)
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 日本科学技术振兴机构数据库
SUN Shizhao, ZOU Jianjun, JIANG Shengkun, CHEN Xuyuan, WANG Zhanliang, GONG Yubin, DUAN Zhaoyun. A Study on the Multi-beam Electron Gun for a G-band Metasurface-based Traveling-wave Tube[J]. Journal of Microwaves, 2025, 41(1): 58-62. DOI: 10.14183/j.cnki.1005-6122.JMW24186
Citation: SUN Shizhao, ZOU Jianjun, JIANG Shengkun, CHEN Xuyuan, WANG Zhanliang, GONG Yubin, DUAN Zhaoyun. A Study on the Multi-beam Electron Gun for a G-band Metasurface-based Traveling-wave Tube[J]. Journal of Microwaves, 2025, 41(1): 58-62. DOI: 10.14183/j.cnki.1005-6122.JMW24186

A Study on the Multi-beam Electron Gun for a G-band Metasurface-based Traveling-wave Tube

More Information
  • Received Date: October 09, 2024
  • Revised Date: December 28, 2024
  • The G-band metasurface-based traveling-wave tube (TWT) is inherently equipped with a double electron beam channel, where electron beams can be transported on both sides of the metasurface, and can be interacted with the localized enhanced electric field of the metasurface to improve the output power and efficiency of the G-band TWT. In this paper, a multi-beam electron gun suitable for the G-band metasurface-based TWT is studied, which uses eight identical circular cathodes to form a dual-row array to produce a double-layer multiple electron beam. At the same time, a three-stage focus electrode is designed to form the double-layer multiple electron beam with suitable size for the electron beam channel. The multi-beam electron gun simulation results show that when the beam voltage and the cathode radius are 24.6 kV and 0.15 mm, respectively, the total beam current is 173 mA, the corresponding emission current density is 30.6 A/cm2, and the distance between the cathode emitting surface and the beam waist position is 13 mm. The static beam transportation simulation results indicate that under a uniform magnetic field of 0.2 T, the electron beams can be stably transported in the metasurface-based slow-wave structure for 70 mm. This study lays the theoretical foundation for the research of G-band metasurface-based TWTs.

  • [1]
    SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928 DOI: 10.1109/22.989974
    [2]
    JIANG S K, YANG G, WANG Z L, et al. Experimental investigation of a shape-optimized staggered double-vane slow-wave structure for terahertz traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2022, 69(8): 4632-4637 DOI: 10.1109/TED.2022.3182639
    [3]
    JIANG S K, WANG X, ZHANG X, et al. Experimental investigation of an electron-optical system for terahertz traveling-wave tubes[J]. IEEE Transactions on Electron Devices, 2021, 68(12): 6498-6504 DOI: 10.1109/TED.2021.3120244
    [4]
    BAIG A, GAZINA D, Kimura T, et al. Performance of a Nano-CNC machined 220 GHz traveling wave tube amplifier[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2930-2937 http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7888463
    [5]
    ZHANG C Q, PAN P, CAI J, et al. Demonstration of a PCM-focused sheet beam TWT amplifier at G-band[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2798-2803 DOI: 10.1109/TED.2022.3233291
    [6]
    吕志方, 张长青, 王战亮, 等. 太赫兹带状注器件[J]. 红外与毫米波学报, 2023, 42(1): 26-36

    LÜ Z F, ZHANG C Q, WANG Z L, et al. Terahertz sheet beam vacuum electron devices[J]. Journal of Infrared and Millimeter Waves, 2023, 42(1): 26-36
    [7]
    杜英华, 蔡军, 张小青, 等. W波段行波管低电压小型化技术研究[J]. 微波学报, 2024, 40(6): 10-13

    DU Y H, CAI J, ZHANG X Q, et al. Study on the low voltage and miniaturization technologies for W-band traveling wave tube[J]. Journal of Microwaves, 2024, 40(6): 10-13
    [8]
    刘英洲, 张长青, 潘攀, 等. 一维带状注行波管注波互作用快速计算程序[J]. 微波学报, 2024, 40(6): 14-21

    LIU Y Z, ZHANG C Q, PAN P, et al. Large signal 1-D rapid beam-wave interaction simulation of sheet electron beam traveling wave tubes[J]. Journal of Microwaves, 2024, 40(6): 14-21
    [9]
    CHEN X Y, XU L, SUN X, et al. Design and development of a sheet-beam electron gun with large current for a THz traveling-wave tube[J]. Asian Journal of Physics, 2023, 32(9-12): 573-580 DOI: 10.54955/AJP.32.9-12.2023.573-580
    [10]
    DUAN Z Y, YANG X F, WANG Z L, et al. Observation of the reversed Cherenkov radiation[J]. Nature Communications, 2017, 8: 14901 DOI: 10.1038/ncomms14901
    [11]
    段兆云. 超构材料及新颖电磁辐射[M]. 北京: 科学出版社, 2023

    DUAN Z Y. Metamaterials and novel electromagnetic radiation[M]. Beijing: Science Press, 2023
    [12]
    DUAN Z Y, SHAPIRO M A, SCHAMILOGLU E, et al. Metamaterial-inspired vacuum electron devices and accelerators[J]. IEEE Transactions on Electron Devices, 2019, 66(1): 207-218 DOI: 10.1109/TED.2018.2878242
    [13]
    JIANG S K, TANG X F, HUANG S L, et al. Metamaterial-inspired 0.22 THz traveling-wave tubes with double sheet beams[J]. IEEE Transactions on Electron Devices, 2023, 70(3): 1306-1311 DOI: 10.1109/TED.2022.3233814
    [14]
    丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010

    DING Y G. Design, manufacture and application of high power klystron[M]. Beijing: National Defense Industry Press, 2010
    [15]
    邵文生, 李娜, 李兴辉, 等. 用于太赫兹真空器件的大电流密度阴极[J]. 真空电子技术, 2013, 1: 20-26

    SHAO W S, LI N, LI X H, et al. High current density cahodes for terahertz vacuum devices[J]. Vacuum Electronics, 2013, 1: 20-26
    [16]
    GILMOUR A S. Principles of traveling wave tubes[M]. Norwood: Artech House, 1994
    [17]
    邓光晟, 吕国强, 陈增泉, 等. 一种新型周期永磁聚焦系统过渡区的设计[J]. 强激光与离子束, 2007, 19(7): 1187-1191

    DENG G S, LÜ G Q, CHEN Z Q, et al. Design of the transition zone for a new type of periodic permanent magnet focusing system[J]. High Power Laser and Particle Beams, 2007, 19(7): 1187-1191
    [18]
    韩明成, 江胜坤, 张宣铭, 等. 带状电子注传输中Diocotron的中文翻译初探[J]. 真空电子技术, 2022, 3: 42-46

    HAN M C, JIANG S K, ZHANG X M, et al. A preliminary study on the chinese translation of Diocotron in striped electron transport[J]. Vacuum Electronics, 2020, 3: 42-46

Catalog

    Article views (8) PDF downloads (2) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return