Citation: | LÜ Gang, SONG Yuqing. 6 GHz~18 GHz Ultra-wideband Miniaturized Solid-state Power Amplifier[J]. Journal of Microwaves, 2025, 41(1): 21-25. DOI: 10.14183/j.cnki.1005-6122.JMW24223 |
Ultra-wideband solid-state power amplifier has a mutually constraining relationship in high-power synthesis, high-heat flux dissipation and lightweight miniaturization. Based on the ridge waveguide H-plane T-type power division/synthesis and wave impedance transformation topological architecture, this design achieves ultra-wideband (6 GHz~18 GHz) 4-way 12 W (typical value) waveguide synthesis output ≥ 40 W, synthesis efficiency ≥ 90%, and takes the standard waveguide port WRD500D36 as the radio frequency end face, which is convenient for the secondary efficient synthesis of the system. An aluminum-embedded copper process is adopted by the structure and the copper is partially buried beneath the high heat source, which can reduce the weight of the power amplifier chip by 54.5% compared to pure copper while meeting the requirements of high heat flux heat dissipation. The vertical interconnection technology is adopted for power supply system. The inherent three-dimensional structure space of waveguides is utilized, and power supply spring pins are employed to achieve vertical interconnection between the power supply board and the chip power supply. This approach simplifies the assembly process and further realizes weight reduction and optimized utilization of structural space. Finally, the high integration of high power, high heat flux heat dissipation, and lightweight miniaturization of the structure is realized, providing the core basic module for the development of solid-state amplifiers with higher power in the 6 GHz~18 GHz.
[1] |
张赵镗. 磁控管的历史、现状与未来发展-兼论微波功率应用前景[J]. 电真空技术, 2016(2): 38-46
ZHANG Z T. The histoty, present status and future development of magnetons-foreground of microwave power applications[J]. Vacuum Electronics, 2016(2): 38-46
|
[2] |
李晓峰, 王玉春, 邹雯婧. 微波真空电子器件的发展与应用[J]. 微波学报, 2022, 38(5): 33-38 http://wbxb.xml-journal.net/article/id/wbxb_20220506
LI X F, WANG Y C, ZOU W J. Developments and applications of the microwave vacuum electronic devices[J]. Journal of Microwaves, 2022, 38(5): 33-38 http://wbxb.xml-journal.net/article/id/wbxb_20220506
|
[3] |
赫保良, 魏义学, 陈永利, 等. 微波功率行波管器件的发展和应用[J]. 真空电子技术, 2018(1): 10-18
HAO B L, WEI Y X, CHEN Y L, et al. Development and application of a microwave power traveling wave tubes[J]. Vacuum Electronics, 2018(1): 10-18
|
[4] |
郑新. 三代半导体功率器件的特点及应用分析[J]. 现代雷达, 2008, 30(7): 12-15
ZHENG X. Characteristics and application analysis of semiconductor power devices for three generations[J]. Modern Radar, 2008, 30(7): 12-15
|
[5] |
党章, 朱海帆, 黄建. 6 GHz~18 GHz脊波导宽带功率合成器[J]. 微波学报, 2019, 35(4): 21-25 http://wbxb.xml-journal.net/article/id/wbxb_20190405
DANG Z, ZHU H F, HUANG J. 6 GHz~18 GHz broadband power combining amplifier based on ridged waveguide[J]. Journal of Microwaves, 2019, 35(4): 21-25 http://wbxb.xml-journal.net/article/id/wbxb_20190405
|
[6] |
成海峰, 徐建华, 袁振. 6 GHz~18GHz宽带波导合成器设计[J]. 固体电子学研究与进展, 2017, 37(5): 329-332
CHENG H F, XU J H, YUAN Z. A design of 6 GHz~ 18 GHz wide band waveguide combiner[J]. Research & Progress of SSE, 2017, 37(5): 329-332
|
[7] |
乔克, 成海峰, 王仁军, 等. 6 GHz~18 GHz超宽带功率放大器脊波导合成技术研究[J]. 固体电子学研究与进展, 2021, 41(3): 182-186
QIAO K, CHENG H F, WANG R J, et al. Study of ridged-waveguid combining technique for 6 GHz~18GHz ultra-wideband power amplifier[J]. Research & Progress of SSE, 2021, 41(3): 182-186
|
[8] |
石永安, 王猛, 刘卫刚, 等. 某雷达大功率固态发射机的结构与散热设计[J]. 现代雷达, 2024, 46(3): 77-81
SHI Y A, WANG M, LIU W G. Structural and thermal design for high-power solid-state transmitter of radars[J]. Modern Radar, 2024, 46(3): 77-81
|
[9] |
江元俊, 王卫华, 郑新. GaN功率器件应用可靠性增长研究[J]. 微波学报, 2023, 39(1): 62-67 http://wbxb.xml-journal.net/article/id/wbxb_20230112
JIANG Y J, WANG W H, ZHEN X. Research on work reliability of GaN power devices[J]. Journal of Microwaves, 2023, 39(1): 62-67 http://wbxb.xml-journal.net/article/id/wbxb_20230112
|
[10] |
GAJEWSKI D A, GANGULY S, SHEPPARD S, et al. Reliability comparison of 28 V-50 V GaN-on-SiC S-Band and X-Band technologies[J]. Microelectronics Reliablity, 2018, 84: 1-6 http://www.wolfspeed.com/downloads/dl/file/id/1048/product/117/reliability_comparison_of_28_v_50_v_gan_on_sic_s_band_and_x_band_technologies.pdf
|
[11] |
FARIBORZ L P, RYAN T R, DONG S H. Design and performance investigation of a temperature compensated transmitter with GaN HEMTS for phased-array applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2022, 70(7): 3640-3651
|
[12] |
王淼, 李涛, 宋俊魁. 6 GHz~18 GHz宽带50 W功率放大器的研制[J]. 舰船电子对抗, 2017, 40(4): 103-105
WANG M, LI T, SONG J K. Development of 6 GHz~ 18 GHz broadband 50W power amplifier[J]. Shipboard Electronic Countermeasure, 2017, 40(4): 103-105
|
[13] |
徐沈健. 微波宽带固态功率合成技术研究[D]. 成都: 电子科技大学, 2019
XU S J. Research on the technology of microwave broadband solid-state power combiner[D]. Chengdu: University of Electronic Science and Technology of China, 2019
|